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Abstract
We consider the spectral correlations of clean globally hyperbolic (chaotic)
quantum systems. Field theoretical methods are applied to compute quantum
corrections to the leading (‘diagonal’) contribution to the spectral form factor.
Far-reaching structural parallels, as well as a number of differences, to recent
semiclassical approaches to the problem are discussed.

PACS numbers: 03.65.Sq, 03.65.Yz, 05.45.Mt

1. Introduction

Except for a few prominent counterexamples [1–3], the low energy physics of practically all
chaotic quantum systems is governed by the universal spectral correlations of Wigner and
Dyson’s random matrix (RM) ensembles [4]. Yet in spite of its ubiquity, and notwithstanding
a number of significant recent advances [5–11], the correspondence above is not yet fully
understood theoretically. Specifically, the ‘non-perturbative’ aspects of the problem—which
manifest themselves, e.g., in the low energy profile of spectral correlations—are not under
quantitative control. Some time ago, the introduction of a field theoretical approach, similar
in spirit to the σ -models of disordered fermion systems, added a new perspective to the
problem [12, 13]. This so-called ‘ballistic σ -model’ describes chaotic systems in terms of
a field theory in classical phase space. Remarkably, it provides a faithful description of
RM spectral correlations already on the most elementary mean field level where fluctuations
inhomogeneous in phase space are neglected; ‘all’ that remains to prove universality is to show
that these inhomogeneities indeed become inessential in the long time limit—an expectation
backed up by the long time ergodicity of chaotic systems.

Unfortunately, however, this latter task soon proved to be excruciatingly difficult. In this
paper, we shall concentrate on the perhaps most serious of these problems, the seeming
incapability of the new approach to correctly describe even the lowest order quantum
interference corrections (‘weak localization corrections’ in the jargon of mesoscopic physics)
to physical observables: in semiclassical terminology, ‘quantum interference’ is a process
wherein two initially identical—modulo the notorious uncertainty introduced by the non-
vanishing of Planck’s constant—Feynman trajectories split up and later recombine to an
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Figure 1. Cartoon of a pair of topologically distinct paths, (γ, γ ′), contributing to the first quantum
correction to the spectral form factor. Note that γ and γ ′ differ in exactly one intersection point
(crossing versus avoided crossing). Inset: blow-up of the intersection region.

overall phase coherent structure (see figure 1). This mechanism is at the root of practically
all quantum phenomena distinguishing disordered or chaotic quantum systems from their
classical limits. It is closely tied to the notion of the Ehrenfest time—the time it takes for the
separation of two trajectories to grow from Planck scales to macroscopic scales. Irritatingly,
however, the field theory formalism appeared to be incapable of describing the initial h̄-
uncertainty triggering these phenomena. Deferring a more detailed discussion to section 3,
let us try to outline the essence of the problem: loosely speaking, the field degrees of freedom
of the ballistic σ -model describe the joint propagation of retarded and advanced Feynman
amplitudes along classical trajectories in phase space. Previous works effectively did not
allow for deviations between the two amplitudes. At this level of approximation, the retarded
and the advanced reference path are strictly identical and the h̄-quantum uncertainty essential
to initiate the formation of quantum interference corrections is absent. Equally important,
points in phase space belonging to different classical trajectories remain uncorrelated. This
implies that the theory will not be able to describe the relaxation into the uniform mean field
configuration (i.e., will not be able to predict RMT behaviour).

A phenomenological solution to this problem was proposed by Aleiner and Larkin
[14–16]. Building on the insight gained in previous work, they added a diffusive contribution
(formally, a second-order elliptic operator) to the action of the model. Multiplied by a coupling
constant of O(h̄), this term introduced a sufficient amount of ‘fuzziness’ to the problem to
initiate quantum interference processes. Although the extra contribution to the action could
not be derived from first principles, AL argued that it ought to be present on physical grounds
(namely, to mimic the diffractive aspects of the propagation of quantum states.)

It is the purpose of this paper to demonstrate that, in fact, no diffraction terms are needed
to describe quantum interference within the framework of the ballistic σ -model. Our analysis
will hinge on an aspect of the theory that has been noticed before [17] yet did not receive
sufficient attention: the σ -model is not a local field theory in phase space; by construction,
and in accord with the principles of the uncertainty relation its maximal resolution is limited
to Planck cells of extension ∼h̄f , where f denotes the number of degrees of freedom. We will
show that this non-locality suffices to describe quantum interference in far-reaching analogy
with recent semiclassical approaches [5, 11] to the problem1. In recent work [18], similar ideas

1 We must mention, though, that our analysis, too, necessitates the ad hoc addition of an extra contribution to the
action of the native model. Yet, in a sense to be qualified below, this term serves purely regulatory purposes. Coupled
to the theory at a strength parametrically weaker than that of the AL term, it does not affect the dynamics at times
t � tE.
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have been applied to compute (in a non-field theoretical setting) weak localization corrections
of a quantum map (namely, the standard map or kicked rotor).

Specifically, we will consider the spectral two-point correlation function R2(ω) at energies
ω larger than the single particle spacing �. We will show that the expansion of R2 in the small
parameter s−1 ≡ (πω/�)−1 agrees with the prediction of RMT. (In a manner that largely
parallels our present analysis, the same result has recently been obtained by periodic orbit
theory [11].) The extensibility of the analysis to the perturbatively inaccessible regime s < 1
remains an open issue.

The rest of the paper is organized as follows. To facilitate the comparison with the
field theoretical formalism, we begin by reviewing some of the recent developments in the
semiclassical approach to quantum chaos (section 2). In section 3 we turn to the field theoretical
approach and apply it to the perturbative expansion of the two-point correlation function. We
conclude in section 4.

2. Semiclassical background

We are interested in the behaviour of globally hyperbolic (chaotic) quantum systems at
timescales t larger than the ergodic time2 terg yet smaller than the Heisenberg time tH ≡ 2πh̄/�.
(The first condition implies that non-universal aspects of the classical dynamics are inessential,
the second implies that concepts of perturbation theory (in the parameter τ ≡ t/tH) are
applicable.)

To describe correlations in the spectrum of the system, we consider the two-point
correlation function

R2(ω) ≡ �2〈ρ(E + ω/2)ρ(E − ω/2)〉E − 1 (1)

and its Fourier transform

K(t) ≡ 1

�

∫
dω e− i

h̄
ωtR2(ω), (2)

the spectral form factor. Here, ρ(E) is the energy-dependent density of states (DoS) and
〈· · ·〉E denotes averaging over a sufficiently large portion of the spectrum centred around some
reference energy E0.

In semiclassics, the spectral form factor is expressed as

Ksc(τ ) =
〈∑

γ γ ′
Aγ A∗

γ ′ ei(Sγ −Sγ ′ )/h̄δ

(
τ − Tγ + Tγ ′

2tH

)〉
,

where
∑

γ γ ′ is a double sum over periodic orbits γ and γ ′, Sγ is the classical action of the
orbit γ, Tγ its revolution time, and Aγ its classical stability amplitude.

Before turning to a more detailed discussion, let us briefly summarize the main results
recently obtained for the semiclassical form factor. For times τ < 1,Ksc can be expanded
in a series in τ . As shown by Berry [19], the dominant contribution to this expansion,
K(1)

sc = 2τ , is provided by pairs of identical (γ = γ ′) or mutually time-reversed (γ = T γ ′)
paths. (Throughout we focus on the case of time reversal and spin rotation invariant systems—
orthogonal symmetry.)

All corrections to the leading contribution K(1) hinge on the mechanism of quantum
interference alluded to in the introduction. For example, the sub-dominant contribution,

2 Formally, terg is defined as the inverse of the first non-vanishing Perron–Frobenius eigenmode. In fact, all our
results can be generalized to general mixing rather than just uniformly hyperbolic systems. The point is that mixing
implies ergodicity and non-integrability, and hence any mixing system will appear to have a constant global Lyapunov
exponent when evaluated on timescales t > terg.
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Figure 2. Cartoon of three classes of orbit pairs that contribute to the expansion of the form factor
at order τ 3. (The triple-encounter region shown in the two figures on the right is the analogue
of the Hikami hexagon familiar from the impurity-diagram approach to disordered systems.) The
existence of the middle pair does not rely on time reversal invariance.

K(2)
sc , to the form factor is provided by pairs (γ, γ ′) that are nearly identical except for one

‘encounter region’:3 in this region one of the paths self-intersects while its partner just avoids
the intersection (cf figure 1). (Alternatively, one may think of two trajectories that start out
nearly identical, then split up and later recombine to form an interfering Feynman amplitude
pair.) The two paths are, thus, topologically distinct yet may carry almost identical classical
action [14]. Specifically, Sieber and Richter [5] have shown that for sufficiently shallow
self-intersections (crossing angle in the configuration space of O(h̄)), the action difference
|Sγ − Sγ ′ | � h̄. For these angles, the duration of the encounter process is of the order of
the Ehrenfest time tE = λ−1 ln(c2/h̄), where λ is the phase space average of the dominant
Lyapunov exponent of the system and c is a classical reference scale (see below) whose
detailed value is of secondary importance. This identifies tE as the minimal time required to
form quantum corrections to the form factor (as well as to other physical observables [14]).
Throughout we shall assume terg < tE < t < tH, where the condition terg < tE is imposed to
guarantee that for timescales t > tE, the system indeed behaves universally. (For terg > tE,
the time window tE < t < terg is characterized by the prevalence of correlations that are
non-universal yet quantum mechanical in nature.)

Summation over all Sieber–Richter pairs [5] leads to the universal result Ksc �
K(1)

sc + K(2)
sc = 2τ − 2τ 2, which is consistent with the short time expansion of the random

matrix form factor

KRM(τ )
0�τ�1= 2τ − τ ln(1 + 2τ). (3)

At higher orders in the τ -expansion, orbit pairs of more complex topology enter the stage.
(For some families of pairs contributing to the next leading correction, K(3), see figure 2.)
The summation over all these pairs [11] (feasible under the presumed condition t > terg)
obtains an infinite τ -series which equals the series expansion of the RMT result (3).4 It is also
noteworthy that both the topology of the contributing orbit pairs and the combinatorial aspects
of the summation are in one-to-one correspondence to the impurity-diagram expansion [21]
of the spectral correlation function of disordered quantum systems.

Central to our comparison of semiclassics and field theory below will be the understanding
of the encounter regions where formerly pairwise aligned orbit stretches reorganize. The
analysis of these objects is greatly facilitated by switching from the configuration space
representation originally used in [5] to one in phase space [7–9]. In the following, we briefly
discuss the phase space structure of the regions where periodic orbits meet. In section 3.4
we will compare these structures to the—somewhat different—field theoretical variant of
encounter processes.

3 Note that a path of duration t � terg generally contains many self-intersections in configuration space.
4 However, as is indicated by the notorious non-analyticity of KRM(τ ) at τ = 1 [20], the form factor at times τ � 1
appears to be beyond the reach of semiclassical summation schemes.
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Figure 3. The structure of the encounter region. The picture on the right shows how the
parallelogram spanned by the four points evolves in time t1, while its symplectic area us is
conserved.

Considering the correction K(2)
sc as an example, we note that the encounter region contains

four orbit stretches in close proximity to each other (cf figures 1 and 3): two segments x(t1) and
x′(t1) of the orbits γ and γ ′ traversing the encounter region and the time-reversed 5 x(t1 + t2)

and x′(t1 + t2) of the trajectories re-entering after one of the loops adjacent to the encounter
region has been traversed (t2 is the duration of the loop traversal and t1 parametrizes the time
during which the encounter region is passed). To describe the dynamics of these trajectory
segments, it is convenient to introduce a Poincaré surface of section S transverse to the
trajectory x(t1). For a system with two degrees of freedom (a billiard, say), S is a two-
dimensional plane slicing through the three-dimensional subspace of constant energy in phase
space. We chose the origin of S such that it coincides with x(t1). Introducing coordinate
vectors eu and es along the stable and unstable direction in S, the three points x̄(t1 + t2), x′(t1)
and x̄′(t1 + t2) are then represented by the coordinate pairs (u, s), (u, 0) and (0, s), respectively.
(Note that the trajectory x′/x̄′ traverses the encounter region on the unstable (s = 0)/stable
(u = 0) manifold thus deviating from/approaching the reference orbit x.)

The above coordinate system is optimally adjusted to a description of the two main
characteristics of the encounter region: its duration tenc and the action difference Sγ − Sγ ′ .
Indeed, it is straightforward to show that the total action difference is simply given by the
area of the parallelogram spanned by the four reference points in phase space, Sγ − Sγ ′ = us

[9]. As for the encounter duration, let us assume that the distance between the orbit points
may grow up to a value c before they leave what we call the ‘encounter region’. (It is natural
to identify c with the typical phase space scale up to which the dynamics can be linearized
around x(t1); however, any other classical scale will be just as good.) After the trajectory x has
entered the encounter region, it takes a time tin ∼ λ−1 ln(c/s) to reach the surface of section
and then a time tout ∼ λ−1 ln(c/u) to continue to the end of the encounter region. (Here, λ is
the Lyapunov exponent of the system. Thanks to the assumption terg 	 tE, λ may be assumed
as a ‘self-averaging quantity’, constant in phase space.) The total duration of the passage is
thus given by tenc(u, s) ≡ tout + tin ∼ λ−1 ln(c2/(us)). The action difference of orbit pairs
contributing significantly to the double sum must be small, |Sγ −Sγ ′ | = us � h̄. Consequently,
tenc � tE ≡ λ−1 ln(c2/h̄), where tE is the Ehrenfest time introduced above. (Note that both
Sγ − Sγ ′ and tenc depend only on the product us. While the individual coordinates u and s
depend on the positioning of the surface of section, their product us is a canonical invariant
and, therefore, independent of the choice of S.)

Having discussed the microscopic structure of the encounter region, we next need to ask
a question of statistical nature: given a long periodic orbit γ of total time t, what is the number
N(u, s, t) du ds of encounter regions with Poincaré parameters in [u, u + du] × [s, s + ds]?
(To each of these encounter regions there will be exactly one topologically distinct partner

5 In a standard position–momentum representation x = (q, p), time reversal is defined as x̄ ≡ (q, −p).
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orbit γ ′ that is identical to γ in all other (N − 1) encounters. Thus, N(u, s, t) du ds is the
number of Sieber–Richter pairs for a given parameter configuration and

∫
du dsN(u, s, t) is

the total number of Sieber–Richter pairs.) Since the times t1 and t2 defining the two traversals
of the encounter region are arbitrary (except for the obvious condition |t1 − t2| > tenc), N is
proportional to the double integral N(u, s, t) du ds ∝ 1

2

∫ t

0,|t2−t1|>tenc
dt1 dt2Pret(u, s, t2) du ds.

The integrand Pret is the probability to propagate from the point (0, 0) in the Poincaré section
to the time reverse of (u, s) in time t2. Since t2 > tE > terg, this probability is constant
and equals the inverse of the volume 
 = 2πh̄tH of the energy shell, Pret(u, s, t2) = 
−1.
Thanks to the constancy of Pret, the temporal integrals can be performed and we obtain
N(u, s, t) ∝ t (t − 2tenc)/2
. The normalization of N is fixed by noting that the temporal
double integral weighs each encounter event with a factor tenc. The appropriately normalized
number of encounters thus reads N(u, s) = t (t−2tenc)

2tenc

. Substitution of N(u, s, t) into the

Gutzwiller sum obtains

K(2)(τ ) =
∑

γ

|Aγ |2δ
(

τ − tγ

tH

)∫ c

−c

du dsN(u, s, t)2 cos(us/h̄)

= τ 2

2πh̄

∫ c

−c

du ds

(
t

tenc(u, s)
− 2

)
cos(us/h̄)

h̄→0= −2τ 2,

where we used the sum rule
∑

γ |Aγ |2δ(τ − tγ
tH

) = τ of Hannay and Ozorio de Almeida [22]
and noted that in the semiclassical limit the first term in the integrand does not contribute (due
to the singular dependence of tenc on h̄.)

Before leaving this section, let us discuss one last point related to the semiclassical
approach: the analysis above hinges on the ansatz made for the classical transition probability
Pt(x, x′) between different points in phase space. Specifically, a naive interpretation of
ergodicity (Pt(x, x′) = 
−1 = const. for times t > terg) is too crude to obtain a physically
meaningful picture of weak localization. One rather has to take into account that the unstable
coordinate, u(t), separating two initially close (u(0) 	 c) points x and x′ grows as
u(t) ∼ u(0) exp(λt). For sufficiently small initial separation, the time it takes before the
region of local linearizability is left,

1

2
tE(x, x′) ≡ 1

λ
ln

c

u(0)
, (4)

may well be larger than terg. This is important because during the process of exponential
divergence, the probability to propagate from x to the time reverse x̄′ is identically zero.
(Simply because the proximity of x and x′ implies that x and x̄′ are far away from each other.)
Only after the domain of linearizable dynamics has been left, this quantity becomes finite and,
in fact, constant:

Pt(x, x′) = 1



�(t − tE(x, x′)). (5)

This concludes our brief survey of the semiclassical approach to quantum coherence. We
next turn to the discussion of the field theoretical formulation and its structural parallels to the
formalism above.

3. Field theoretical formulation

3.1. Definition of the model

The ballistic σ -model is defined by a functional integral Z(ω) = ∫
DT e−S[T ] extending

over field configurations T (x) in classical phase space. Its action is given by
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S[T ] = S0[T ] + Sreg[T ], where

S0[T ] = i

4h̄

∫
(dx) tr

(
ω+

2
σ ar

3 T −1�T + T −1�[H, T ]

)
(6)

is the action of the ‘native’ model [13] and Sreg is a regulatory contribution to be discussed
momentarily. Here,

∫
(dx) ≡ (2πh̄)−f +1

∫
dx δ(E0 − H(x)) is the integral over the (2f − 1)-

dimensional shell 
 of constant energy6 E0, T = T (x), σ ar
3 and � are matrices whose internal

structure will be discussed momentarily, H is the classical Hamilton function of the system,
and ω is the scale at which we are probing the spectrum. (Within the field theoretical approach
it is preferable to work in energy rather than in time space.) Importantly, all products appearing
in the action (6) have to be understood as Moyal products,

(fg)(x) ≡ e
ih̄
2 ∂x1 I∂x2 f (x1)g(x2)|x1=x2=x,

where the matrix I is defined through xT Ix′ ≡ q · p′ − p · q′. For later reference we note that
the Moyal product affords the alternative representation

(fg)(x) =
∫

dx1

(πh̄)f

dx2

(πh̄)f
e

2i
h̄

xT
1 Ix2f (x + x1)g(x + x2). (7)

Equation (7) makes the ‘non-locality’ inherent to the action of the ballistic σ -model manifest:
all products involve a coordinate averaging over Planck cells of volume ∼h̄f . As we shall see
below, this non-locality encapsulates essential aspects of the semiclassical dynamics discussed
in the previous section.

The second contribution to the action

Sreg[T ] = greg

8

∫
(dx) tr(∂iT (x)∂iT

−1(x)) (8)

serves to damp out singular field configurations (Unlike with most other field theories, the
action of the unregularized model, governed by the generator [H, ] of unitary quantum
dynamics, does not have the capacity to self-regularize.) In A.1 we will argue that a coupling
constant greg ∼ h̄2 suffices to stabilize the theory. Coupled to the theory at this strength, the
action Sreg does not yet influence the dynamics on the physically relevant times tE. This stands
in contrast to the theory of AL where a second-order derivative term (similar in structure to
(8) but with coupling constant greg ∼ h̄) actively governed the dynamics at times t � tE.

In the original references, the ballistic σ -model was introduced as a supersymmetric
field theory. However, for the purposes of our present analysis it will be more convenient
to employ the simpler formalism of the replica trick. Within this approach, the matrices
T (x) ∈ Sp(4R)/Sp(2R) × Sp(2R) act in a tensor product of R-dimensional replica space, a
two-dimensional space distinguishing between advanced and retarded propagators (ar-space)
and a two-dimensional space (tr-space) whose presence is required to account for the time
reversal invariance of the system [24]. Here, Sp(2R) is the 2R-dimensional symplectic group
and � = σ ar

3 ⊗ 1tr ⊗ 1R , where 1R is the R-dimensional unit matrix. While the use of
replicas bars us from performing non-perturbative calculations, it significantly facilitates the
comparison to the semiclassical analysis above.

3.2. Two-level correlation function

Our goal is to compute the two-level correlation function R2(ω). Expressed in terms of single
particle Green functions G± = (E ± i0 − H)−1,

R2(ω) = �2

2π2
Re〈tr(G+(E + ω/2)) tr(G−(E − ω/2))〉E,c,

6 See A.2 for details on the definition of this integral.
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where 〈· · ·〉E,c denotes the (connected) average over an energy interval much larger than the
inverse of the smallest timescales in the problem (the inverse of the Lyapunov time, say.)
Within the replica formalism, R2 is obtained by a twofold differentiation of the partition
function w.r.t. the energy parameter7:

R2(s) = −1

2
lim
R→0

1

R2
Re ∂2

s Z(s),

where the dimensionless variable s = πω/�. As long as we restrict ourselves to perturbative
operations, i.e. an expansion of the two-level correlation function in a series

R2(s)
s>1= Re

∞∑
n=2

cn(is
+)−n, (9)

the replica limit R → 0 is well defined. A straightforward Fourier transformation,
K(τ) = π−1

∫
ds e−2isτR2(s), shows that the coefficients cn are related to the coefficients

dn of the spectral form factor K(τ) ≡ ∑∞
n=1 dnτ

n through

dn = − (−2)n

n!
cn+1. (10)

In fact, however, there are much more far-reaching analogies between the temporal and the
frequency representation of spectral correlations: at every given order n various topologically
distinct families of orbit/partner orbit pairs (‘diagrams’) contribute to the coefficient dn.
Likewise, the expansion coefficients cn obtain as sums of Wick contractions of the generating
functional Z(ω). We shall see that there is an exact correspondence between field theoretical
and semiclassical diagrams (both in topological structure and numerical value) which simply
means that the two approaches describe spectral correlations in terms of the same semiclassical
interference processes.

3.3. Quadratic action

We next turn to the actual expansion of the field integral. For this purpose, we shall employ
the so-called ‘rational parametrization’ of the coset-valued field T. This parametrization is
defined by T = 1 + W , where

W =
( −B†

B

)
ar

(11)

is a matrix that anti-commutes with the matrix � introduced above. Its off-diagonal blocks
take values in the Lie algebra of Sp(2R), i.e. they satisfy the constraint B† = Bτ ≡(
iσ tr

2 ⊗ 1R

)
BT

(
iσ tr

2 ⊗ 1R

)−1
. The principal advantage of the rational parametrization is

that the Jacobian associated with the transformation from the T-matrices to the linear space of
B-matrices is unity:

∫
DT = ∫

DB.
Substituting this representation into the action, we obtain a series S[B] = ∑∞

n=1 S(2n)[B],
where S(2n) is of 2nth order in B. Let us begin by discussing the unregularized quadratic action

S
(2)
0 [B] = − i

2h̄

∫
(dx) tr[B†(ω+ − [H, ])B],

7 This follows from the fact that (by construction)

Z(ω1 − ω2) = 〈det[iG+(E + ω1)]
R det[iG−(E + ω2)]

R〉E.

Using that ln z = limR→0(z
R − 1)/R, it is then straightforward to verify that

lim
R→0

1

R2
Re ∂2

ω1−ω2
Z(ω1 − ω2) = −Re〈tr G+(E + ω1) tr G−(E + ω2)〉E,c = −2(π/�)2R2(ω1 − ω2).
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where [H, ] is the generator of quantum time evolution. Very little can be said about this
generator in concrete terms which means that the action S

(2)
0 does not qualify as a ‘reference

point’ of a perturbative expansion scheme. (Indeed, note that the projection |α〉〈α| onto an
eigenstate |α〉 of the Hamilton operator H is annihilated by [H, ]. This means that the quantum
evolution operator possesses a large number of (nearly) unstable ‘zero modes’ whose action
is damped only by the frequency parameter ω.)

Much more is known about the generator {H, } of classical dynamics, where {f, g}(x) ≡
∂T

x1
I∂x2 f (x1)g(x2)|x1=x2=x is the Poisson bracket. Expanding the Moyal commutator,

[H,B](x) = ih̄{H,B}(x) + O((h̄∂x)
3B(x)),

we note that the quantum generator [H, ] differs from its classical counterpart {H, } by the
presence of higher order derivative terms. In A.1 it is shown that the quadratic regulatory
action

S(2)
reg [B] = greg

∫
(dx) tr(∂iB

†(x)∂iB(x))

suffices to damp out higher derivatives and hence effectively projects the quadratic action onto
its classical limit. Assuming regularization in the above sense, our further discussion will be
built on the action

S
(2)
cl [B] = 1

2

∫
(dx) tr[B†(x)(LωB)(x)], (12)

where Lω ≡ −iω/h̄ − {H, }. Throughout, the operator Pω ≡ L−1
ω,reg will play an important

role. Here, the subscript ‘reg’ indicates that Lω acts in a space of functions coarse grained
over cells in phase space of ‘volume’ (h̄2/a)f , where a is some classical reference scale of
dimensionality ‘action’ whose detailed value will not be of much concern. Importantly, Pω is
not strictly inverse to the bare Liouville operator (i.e., the Liouville operator acting in the space
of unregularized functions), LωPω(x, x′) �= δ(x − x′). Rather, the time Fourier transform,
Pt(x, x′) can resolve the definite dynamical evolution generated by the Liouville operator only
up to timescales

t̃E ≡ λ−1 ln
c2a

h̄2 ∼ 2tE.

Thereafter, the uncertainty in the resolution of the boundary conditions (the effect of
smoothening) renders the dynamics unpredictable, i.e.,

Pt(x, x′) =
{
δ(x − x′(t)), t < t̃E,


−1, t > t̃E.
(13)

The crossover between the two regimes takes place over timescales ∼max{�t̃E, terg}, where
�t̃E 	 tE is the uncertainty in t̃E caused by an eventual non-uniformity of the Lyapunov
expansion8. (Note that in previous discussions of the ballistic σ -model, the propagator P was

8 The results above apply to uniformly hyperbolic systems. In the case of non-uniform hyperbolic systems,
local fluctuations in the Lyapunov expansion rate λ(x) need to be taken into account. The logarithmic mismatch
y(x, t) = ln(u(t)/u(0)) between two trajectories starting at x and x + u(0)eu, respectively, grows as ẏ = λ(x(t)).
(eu is the locally most unstable direction in phase space.) Due to inhomogeneities in the expansion rate, y(x, t) is
a fluctuating quantity with mean y(t) and a certain width �y(t). Importantly, an upper bound on fluctuations in y

is imposed by Oseledec’s theorem [25] which states that the phase space average λ of the Lyapunov expansion rate
equals the long time expansion rate of individual trajectories almost everywhere: y(x, t)/t → λ for t → ∞ for almost
all x. Consequently, �y(t) ∼ tα grows at a rate α < 1. (For example, the model of statistically independent Gaussian
fluctuations of the local expansion rate employed by AL [14] leads to α = 1

2 .) By definition of t̃E, a phase space
distribution of initial extension ∼(h̄2/a)f has expanded to classical dimensions when y(t) = λt̃E. Defining �t̃E as the
time uncertainty in t̃E (due to fluctuations in the local expansion rate), we obtain the estimate �t̃E ∼ �y(t̃E)/λ ∼ tαE .
This means that �t̃E/t̃E ∼ tα−1 vanishes in the semiclassical limit. For finite h̄, the effective relaxation rate of the
system is set by max{�t̃E, terg}.
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mostly identified with the Perron–Frobenius operator, i.e., an object that describes relaxation

into a uniform configuration, Pt(x, x′)
t>terg= const. over classically short times. However, it

is not at all clear how this behaviour may be reconciled with the indispensable condition that

Pt(x, x̄′) t<tE(x,x′)= 0: for |x − x′| = O(h̄), the propagator must be able to resolve fine structures
in phase space over times ∼tE parametrically larger than the relaxation time of the Perron–
Frobenius operator. In contrast, equation (13) is motivated by the structure of the action, and
does resolve the classical phase space dynamics up to the Ehrenfest time. In fact, we will see
that the scale t̃E > tE does not explicitly enter the results of the theory. The reason is that,
due to a conspiracy of quantum non-locality and chaotic instability, the dynamics becomes
effectively irreversible instantly after the Ehrenfest time (on timescales of the order of the
inverse Lyapunov exponent). Thus, at a time where the artificially introduced smearing would
become virulent, the theory has long become quantum-unpredictable.)

3.4. Perturbative expansion

We now have everything in store to proceed to the perturbative expansion of the functional
integral. The dominant contribution to the series (9) obtains by integration over the quadratic
action:

R
(2)
2 (s) = −1

2
lim
R→0

1

R2
Re ∂2

s

∫
DB exp(−Scl[B])

= −1

2
Re lim

R→0

1

R2
∂2
s (det Pω)2R2 = Re ∂2

s ln det
(
P −1

ω

) ω	h̄/terg� Re(is+)−2. (14)

This result implies (cf equations (9 and 10)) d1 = 2 in accord with the semiclassical analysis9.
To compute higher order terms in the expansion we need to consider the non-linear

contributions S(2n>2) to the action. Substituting the representation (11) into the action (6) we
obtain

S(2n)[B] = 1

2

∫
(dx) tr[(−B†B)n−1B†LωB]. (15)

By elementary power counting, each matrix B scales as (symbolic notation) ∼ (Lω)−
1
2 ∼

ω− 1
2 ∼ s− 1

2 . This implies that each vertex S(2n) contributes a factor ∼(B†B)n−1B†LωB ∼
s−n+1 to the functional integral. Specifically, the dominant correction (∼s−3) to the leading
contribution (14) obtains by first-order expansion in the vertex S(4):

R
(3)
2 (s) = −Re lim

R→0

1

(2R)2
∂2
s

∫
(dx)〈tr(B†BB†LωB)〉B. (16)

We emphasize again that all products of B-matrices have to be understood as Moyal products.
To obtain a convenient representation of the product of more than two of these matrices,

9 It is worthwhile noting that the agreement between semiclassics and field theory does not pertain to times t < terg:
for these times, short periodic orbits traversed more than once influence the behaviour of the form factor. For reasons
only partly understood, the σ -model fails to correctly count the integer statistical weight associated with the repetitive
traversal of periodic orbits. The essence of the problem [26] is that the degrees of freedom of the σ -model (the
B-fields) describe the joint propagation of amplitudes locally paired in phase space. However, an n-fold repetitive
process is governed by the local correlation of 2n Feynman amplitudes. Perturbative approaches to the problem fail to
correctly describe these correlations. Interestingly, a non-perturbative evaluation of the functional integral—feasible
in the artificial case of periodic orbits with unit monodromy matrix—leads to the correct result (Zirnbauer M R,
unpublished).
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we iteratively apply the prototype formula (7). A straightforward calculation then yields the
general product formula

(A1 . . . A2n)(x) =
∫ 2n∏

i=1

dxi

(πh̄)f
e

i
h̄
S(x1,...,x2n)A1(x + x1) . . . A2n(x + x2n),

where the bilinear form S(x1, . . . , x2n) ≡ 2
∑

i<j (−)i+j xT
i Ixj . Below, we will apply this

formula to the fields B of the theory. In A.2 we show that in this case, all energy coordinates Ei

get locked. Here, we assume a coordinate choice x = (E, t, y) where E is an energy variable,
t its canonically conjugate time-like variable (a coordinate parametrizing the Hamiltonian flow
through x) and y a (2f − 2)-dimensional vector of coordinates transverse to the flow. Further,
fluctuations in the time-like variables ti are negligible. Introducing the shorthand notation∫

xi
≡ (πh̄)−f +1

∫
dxiδ(Ei − E0)δ(ti), we thus have

(B†B)2n(x) =
∫

x1,...,x2n

e
i
h̄
S(x1,...,x2n)B†(x + x1) . . . B(x + x2n). (17)

Using this representation in (16), applying the contraction rules (B.1) discussed in appendix B,
and taking the replica limit, we obtain

R
(3)
2 (s) = Re

(



tH

)2

∂2
s

∫
(dx)

∫
x1,...,x4

e
i
h̄
S(x1,...,x4)Pω(x + x1, x + x3)Lω,x4Pω(x + x4, x + x2),

where the coordinate subscript in Lω,x indicates the argument on which the Liouvillian acts.
The physical meaning of this expression is best revealed by switching to the Fourier conjugate
picture. Inserting the definition (2) of the form factor, we obtain

K(2)(τ ) = −2τ 2 
2

tH

∫
(dx)

∫
x1,...,x4

e
i
h̄
S(x1,...,x4)

×
∫ t

0
dt ′Pt−t ′(x + x1, x + x3)Lt ′,x4Pt ′(x + x4, x + x2), (18)

where Lt ≡ ∂t −{H, }. Equation (18) makes the analogies (as well as a number of differences)
between the semiclassical and the field theoretical description of quantum corrections explicit:
central to both approaches are two semi-loops shown schematically in figure 1. In either case,
the proximity of these loops is controlled by phase factors which contain the coordinates of
the end points (in a canonically invariant manner) as their arguments. However, unlike with
semiclassics, equation (18) does not relate the unification of the two semi-loops to specific
periodic orbits. Rather, the two halves are treated as independent entities, each described in
terms of its own probability factor P. Similarly, the phase factor controlling the proximity of
the terminal points does not correspond to the action difference between two orbits.

The result obtained for K(2)(τ ) in equation (18) critically depends on the behaviour of
the propagator Pt at times t ∼ tE(x, x′) ∼ tE, cf equations (4 and 5). Specifically, we shall use
that ∂tPt (x̄, x′) = 
−1δ(t − tE(x, x′)), where δ(t) is some smeared δ-function whose detailed
functional structure is not of much importance. (All we shall rely upon is

∫
dt δ(t)f (t) � f (0)

for functions that vary slowly on the scales where δ(t) varies.) We also note that the Poisson
bracket {H, f }(x) ∼ ∂tf (x) effectively differentiates along the trajectory through x. However,
the time tE(x, x′) = tE(y, y′) defined in equation (4) depends only on the coordinates transverse
to the trajectory. This implies {H,Pt(x̄, x′)} = {H,Pt(tE(x, x′))} = 0. We thus conclude
that the action of Lt on the function P is given by Lx,tPt (x̄, x′) � 
−1δ(t − tE(x, x′)) �

−1δ(t − tE). To understand the meaning of the second approximation, note that it takes a
time tE before the bulk of the Planck cell to which the points x and x′ belong has grown to
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classical scales c. For times t > tE, the fraction of the Planck cell which has not yet acquired
macroscopic dimensions shrinks exponentially on the classical Lyapunov scale λ−1 	 tE. This
means that tE(x, x′) � tE up to an insignificant uncertainty of O(λ−1). Using these results,
as well as the normalization relations

∫
(dx) = tH and

∫
x1,...,x2n

exp
(

i
h̄
S(x1, . . . , x2n)

) = 1, we
obtain

K(2)(τ ) � −2τ 2 1

tH

∫
(dx)

∫
x1,...,x4

e
i
h̄
S(x1,...,x4)

∫ t

0
dt ′�(t − t ′ − tE)δ(t ′ − tE)

= −2τ 2�(t − 2tE)

in agreement with the result of the semiclassical analysis.

3.5. Higher orders of perturbation theory

What happens at higher orders in perturbation theory in the parameter s−1? Before turning
to the problem in full, it is instructive to have a look at the zero-mode approximation
to the model. The action of the zero-mode configuration—formally obtained by setting
T (x) ≡ T = const—is given by S0[Q] = is+ tr

(
σ ar

3 Q
)/

4, where we have used the standard
[27] notation Q ≡ T −1�T . Parametrizing the matrix T = 1 + W as in (11), an expansion in
the generators B obtains the expression

S0[B] =
∞∑

n=1

S
(2n)
0 [B], S

(2n)
0 [B] = −is+ tr(−B†B)n. (19)

It is known [27] that, term by term in an expansion in s−1, the zero-mode functional reproduces
the RMT approximation to the correlation function R2(s). Second, there exists a far-reaching
structural connection between the perturbative expansion of the zero-mode theory on the one
hand and the Gutzwiller double sum on the other. (In fact, the correspondence Gutzwiller sum
↔ zero-dimensional σ -model ↔ RMT played a pivotal role in the proof that the semiclassical
expansion coincides with the RMT result [11].)

More specifically, to each term contributing to the Wick contraction of〈(
S

(4)
0 [B]

)m2
(
S

(6)
0 [B]

)m3
. . .

〉
0 (20)

there corresponds precisely one semiclassical orbit/partner orbit pair (or ‘diagram’). By
power counting, this diagram contributes to the correlation function at order s−2−∑

n mn(n−1).
For every value of n = 2, 3, . . . , it contains mn encounter regions where n orbit segments
meet and

∑
n nmn inter-encounter orbit stretches. The topology of the diagram is fixed by the

way in which the B matrices are contracted. (For example, the first of the diagrams shown in
figure 2 corresponds to the contraction (1–3, 2–6, 4–8, 5–7) of tr(B†BB†B) tr(B†BB†B), the
second diagram to the contraction (1–4, 2–5, 3–6) of tr(B†BB†BB†B), etc.) Importantly,
the minimum time required for the build-up of a diagram (i.e., the time required to
traverse the

∑
n mn encounter regions) is given by tE × ∑

n nmn.
Turning back to the full problem, let us consider the analogue of the zero-dimensional

expression (21),

〈(S(4)[B])m2(S(6)[B])m3 . . .〉, (21)

where S(2n) is given by (15) and the average is over the full quadratic action (12). It is
natural to expect that the unique correspondence between Wick contractions and semiclassical
diagrams carries over to the full model. If so, individual contractions should vanish/reduce
to the universal RMT result for times shorter/much larger than tE × ∑

n nmn. In section 3.4
this correspondence was exemplified for the simplest non-trivial example, the Sieber–Richter
diagram 〈S(4)[B]〉.
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Figure 4. Two representatives of the ‘clover leaf’ diagram class contributing to the form factor at
O(τ 3). For discussion, see the text.

Perhaps unexpectedly, the straightforward one-to-one correspondence outlined above does
not pertain to higher orders in perturbation theory. To anticipate our main findings, it turns out
that at order (s−4 ↔ τ 3) in the series expansion, propagators of short duration Pt<tE —absent
in the (s−3 ↔ τ 2) term considered above—begin to play a role. This implies that individual
contractions may relate to more than one semiclassical diagram class. Nonetheless, integration
over all time parameters obtains a universal result.

As an example, let us consider the (1–3, 2–6, 4–8, 5–7) contraction of 〈tr(B†BB†B)

tr(B†BB†B)〉. For generic values (ti ∼ tH � tE) of the time arguments carried by the four
resulting propagators the contraction corresponds to the orbit pair shown in figure 2 left.
However, the integration over times ti also extends over exceptional values where one of the
two propagators connecting the two encounter regions ((2–6) or (4–8)) is of short duration
<tE. Such a short time propagator connects two distinct vertices10. This results in a structure
as shown in figure 4 right, where the two clusters of dots indicate the eight phase space
arguments of the B-fields, the straight line-pair represents the short propagator, and the box
indicates that all phase space points lie in a single encounter region. Evidently, this structure
corresponds to a pair of orbits visiting a single encounter region twice. Diagrams of this
structure are canonically obtained by contraction of a ‘Hikami hexagon’ tr(B†BB†BB†B), as
indicated in figure 4 left. Fortunately, the absence of a unique assignment to semiclassical
orbit families, does not significantly complicate the actual computation of the diagrams:
closer inspection shows that taking the Liouville operators involved in the definition of the
Hikami boxes into account and integrating by parts, we again obtain the universal zero-mode
result.

Summarizing, we have seen that at next-to-leading order in perturbation theory short
time propagators begin to play a role. While this complication prevents the assignment of
Wick contractions to orbit pairs of definite topology, the results obtained after integration
over all temporal configurations remain universal (agree with the RMT prediction). We trust
that the structures discussed above are exemplary for the behaviour of the ballistic σ -model
at arbitrary orders of perturbation theory, i.e., after integration over all intermediate times,
each contraction contributing to (21) produces the universal result otherwise obtained by its
zero-dimensional analogue equation (20).

10 While, in principle, the theory also permits the formation of short time propagators connecting two phase space
points of a single vertex, these contributions are practically negligible: imagine a propagator Pt (x, x′) returning after

a short time to its point of departure (|x − x′| ∼ h̄
1
2 ). Since t is much shorter than the Ehrenfest time, all other

propagators departing from the concerned Hikami box will essentially follow the trajectory traced out by the return
propagator, and, after a time t, also return to the departure region. In semiclassical language, we are dealing with
an orbit that traverses a loop structure in phase space repeatedly. It is known, however, that for large timescales,
the probability to find repetitive orbits is exponentially small (in the parameter exp(−λt)), i.e. short self-retracing
contractions are negligible.
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4. Conclusions and outlook

In this paper, we have applied field theoretical methods to explore quantum interference
corrections to the spectral form factor of individual chaotic systems. We have seen that the
formation of the latter essentially relies on the fact that the ballistic σ -model—a field theory
defined in classical phase space—is not capable of resolving structures on scales smaller than
the Planck cell. This quantum uncertainty is an intrinsic feature of the model (namely, through
the fact that the field degrees of freedom are multiplied by Moyal rather than by conventional
products) and need not be added by hand as was done in previous approaches. In a manner that
largely parallels the results of recent semiclassical analyses, the interplay of this uncertainty
with the instabilities of the underlying classical chaotic dynamics leads to the formation of
universal quantum interference corrections to the spectral form factor.

The analysis above is perturbative in nature and, thus, limited to energy scales larger
than the single particle level spacing. To advance into the perturbatively inaccessible regime
ω < � (i.e. to prove the universality hypothesis in full) one would need to understand
how the conspiracy of quantum uncertainty and classical instabilities damps out fluctuations
inhomogeneous in phase space at timescales larger than the Ehrenfest time. The identification
of a concrete mechanism effecting this reduction remains an open issue.
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Appendix A. Regularization

Throughout this appendix we use phase space coordinates x = (E, t, y), where E is the energy,
t is a time-like coordinate conjugate to energy and parametrizing the Hamiltonian flow through
x, and y is a (2f − 2)-component vector of energy shell coordinates transverse to t.

A.1. In-shell regularization

As discussed in the text, the quadratic action of the model is controlled by the commutator
[H, ] or, upon Wigner transformation, the series of operators [H, ] �→ ih̄{H, } +∑∞

n=1 h̄2n+1D(2n+1)(∂x), where D(2n+1)(∂x) is an operator of (2n + 1)th order in the phase
space derivatives

{
∂xi

}
. When acting in a space of functions smooth on scales h̄, terms beyond

the leading term (the Poisson bracket) are inessential and the quantum dynamics collapses to
its semiclassical limit. Naively, one might hope that to achieve this reduction it suffices to
choose the initial distributions in phase space sufficiently smooth. However, what complicates
the problem is that the generator of classical evolution {H, } by itself leads to the dynamical
build-up of singularities, no matter how smooth the initial distribution was. The point is that,
due to the global hyperbolicity of the dynamics, we may locally identify truly expanding
and contracting coordinate directions. Focusing attention on the latter, and linearizing the
flow around a given reference trajectory, the equations of motion controlling the evolution
of a phase space distribution ρ assume the form ρ̇ = {H, ρ} = λs∂sρ + · · ·, where s is
the coordinate that contracts strongest, λ is the corresponding Lyapunov exponent, and the
ellipses indicate derivatives in other coordinate directions. After a time t ∼ λ−1 ln(δx0/h̄),
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where δx0 denotes the characteristic initial extension of the distribution, structures in the
s-direction fluctuating on scales ∼h̄ will have formed implying that derivatives D(2n+1) acting
in s-direction can no longer be neglected. One way to remove this complication [28] is to add
to the generator of classical time evolution an elliptic operator ∼D∂2

s , where D is constant.
Indeed, it is straightforward to show (by dimensional analysis or by explicit calculation) that
for the regularized operator λs∂s + D∂2

s the initial contraction halts at a characteristic scale
s ∼ (D/λ)

1
2 . Choosing D ∼ h̄2, it is guaranteed that the distribution will not build up structure

on scales �h̄, i.e. the quantum corrections to classical dynamics are negligible. This motivates
the addition of the regulatory contribution (8) to the action.

A.2. Off-shell regularization

In the main text (cf, e.g., equation (17)), we have assumed that (a) all fields are defined on a
shell of constant energy E0 and (b) the theory is local in the conjugate ‘time’ coordinate t. To
understand the meaning of this reduction, we need to recall the original definition of the field
degrees of freedoms, Q(x), of the ballistic σ -model. According to [13], Q = T −1�̃T , where
�̃ ≡ δEav(E0 − H) ⊗ � and the ‘delta function’

δEav(E0 − H) ≡ 1

πEav

√
1 −

(
E0 − H

2Eav

)2

projects on an energy window of width Eav. (In the original paper, Eav was identified with
the energy window over which the two-point correlation function (1) is averaged, hence the
subscript ‘av’.) Integrating an action functional of these field degrees of freedom over all of
phase space and absorbing δEav into the integration measure, dx �→ dx×δEav(E0 −H) ∝ (dx),
we obtain the ‘energy shell’ measure used in the text. To understand the energy dependence
of the fields themselves, we write T (x) = 1 + W(x), where W(x) anti-commutes with �

and, therefore, commutes with the function δEav(E0 − H). (Recall that all products are Moyal
products, i.e. functions in phase space do not necessarily commute with each other.) Evaluating
the latter condition, we obtain 0 = [W, δEav(E0 − H)](x) = ih̄δ′

Eav
(E0 − E)∂tW + O(h̄3).

To rigorously fulfil this condition, we would need to require independence of W of the
coordinate t along the flow through the phase space point x—obviously too strong a
restriction. Instead, we will impose the weaker condition of approximate commutativity,∥∥[

W, δEav(E0 − H)
]∥∥2 	 ∥∥WδEav(E0 − H)

∥∥2
, where the operator norm is defined as

‖A‖2 ≡ tr(A†A) = ∫
dx|A(x)|2. It is straightforward to check—by explicit calculation

or by dimensional reasoning—that the commutator is small in the above sense provided
that ∂tW < (Eav/h̄)W , i.e. the fields W have to be smooth in ‘time direction’ on scales
∼h̄/Eav.11

The above energy–time duality suggests the following interpretation of the theory. Let us
introduce a ‘stroboscopic’ picture of the particle dynamics wherein timescales smaller than a
certain classical t0 need not be resolved. (For example, in a billiard, t0 	 tf where tf is the
time of flight through the system, etc.) All fields are smooth on scales t0. This means that the
width of the averaging window must be (at least) of order Eav ∼ h̄/t0. In the classical limit,
we indeed project onto a sharp ‘energy shell’. (However, we do not know how to reconcile the
condition of anti-commutativity with � with the condition of a mathematically sharp energy
shell proposed in [17].) Second, we require that the fields W(E) do not vary significantly

11 Using equation (7), it is also straightforward to show that field configurations W(E, τ) which rigorously commute
with δEav (E0 − H) do (a) vanish for energies outside a window of width Eav around E0 and (b) have a bounded
Fourier spectrum |ε| < Eav, where ε is Fourier conjugate to the time variable τ .
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over their narrow range [E0 − Eav, E0 + Eav] of definition (the so-called ‘mode locking
assumption’ [13]). This can be achieved by choosing the second-order regulator derivative in
E direction as ∼(h̄/t0)

2∂2
E . We thus integrate over field configurations that are coarse grained

over Planck cells of extension (t0, Eav = h̄/t0). As a result, the integral over the (E, t)-sector
of the Moyal products can be carried out and we arrive at the theory independent of energies
and local in time direction considered in the text.

Appendix B. Perturbation theory

For completeness, we briefly summarize the contraction rules [13] employed in calculating
integrals over products of B matrices,

〈tr(B(x)A) tr(B†(x′)A′)〉B = 


tH
Pω(x, x′) tr(AA′),

〈tr(B(x)AB†(x′)A′)〉B = 


tH
Pω(x, x′) tr(A) tr(A′),

〈tr(B(x)A) tr(B(x′)A′)〉B = 


tH
Pω(x, x̄′) tr(AA′τ ),

−〈tr(B(x)AB(x′)A′)〉B = 


tH
Pω(x, x̄′) tr(AA′τ ),

(B.1)

where A and A′ are arbitrary fixed matrices. To compute the integral over an arbitrary product
of traces of B-matrices, one first forms all possible total pairings B–B†, B—B and B†–B†, and
then computes individual pairings by means of (B.1). Each contraction reduces the number
of matrices by 2. Eventually, one obtains an expression ∼(tr 1)n = (2R)n�2 (where all
contributions with n > 2 vanish in the replica limit).
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